Visit us at : http://www.agyatgupta.com; Email:agyat99@gmail

FS-11-0036	REGNO:-TMC	-D/79/89/36
AGYAT GUPTA	(M.Sc., M.Phil.)	YEAR OF QUALITY EDUCATION
THE EXCEL	LENCE KEY	
TARGET MA	THEMATICS	
	,8,	2731

CODE:-AG-TS-11-0036 GENERAL INSTRUCTIONS :

- 1. All question are compulsory.
- 2. The question paper consists of 29 questions divided into three sections A,B and C. Section A comprises of 10 question of 1 mark each. Section B comprises of 12 questions of 4 marks each and Section C comprises of 7 questions of 6 marks each .
- 3. Question numbers 1 to 10 in Section A are multiple choice questions where you are to select one correct option out of the given four.
- 4. There is no overall choice. However, internal choice has been provided in 4 question of four marks and 2 questions of six marks each. You have to attempt only one lf the alternatives in all such questions.
- 5. Use of calculator is not permitted.
- 6. Please check that this question paper contains 5 printed pages.
- 7. Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

सामान्य निर्देश :

- 1. सभी प्रश्न अनिवार्य हैं।
- इस प्रश्न पत्र में 29 प्रश्न है, जो 3 खण्डों में अ, ब, व स है। खण्ड अ में 10 प्रश्न हैं और प्रत्येक प्रश्न 1 अंक का है। खण्ड – ब में 12 प्रश्न हैं और प्रत्येक प्रश्न 4 अंको के हैं। खण्ड – स में 7 प्रश्न हैं और प्रत्येक प्रश्न 6 अंको का है।
- 3. प्रश्न संख्या 1 से 10 बहुविकल्पीय प्रश्न हैं। दिए गए चार विकल्पों में से एक सही विकल्प चुनें।
- इसमें कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 4 प्रश्न 4 अंको में और 2 प्रश्न 6 अंको में दिए गए हैं। आप दिए गए विकल्पों में से एक विकल्प का चयन करें।
- 5. कैलकुलेटर का प्रयोग वर्जित हैं ।
- 6. कृपया जाँच कर लें कि इस प्रश्न–पत्र में मुद्रित पृष्ठ 5 हैं।
- प्रश्न–पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर–पुस्तिका के मुख–पृष्ठ पर लिखें।

Target Mathematics by- AGYAT GUPTA ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601;</u> 9425110860;9425772164(P) Visit us at : http://www. agyatgupta.com; Email:agyat99@gmail.com

 Target Mathematics by- AGYAT GUPTA ;
 Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : 9425109601; 9425110860; 9425772164(P)

Visit	us at : http://www. agyatgupta.com; Email:agyat99@gmail.com	_				
	$(4, b^2)$ belong to relation R, find the value of a and b. Ans. a=1,b=2					
Q.7	Find values of k if area of triangle is 4 square units and vertices are $(k,0),(4,0),(0,2)$. Ans k=0,8					
Q.8	The number of all possible matrices of order 3×3 with each entry 0 or 1. Ans = 2 ⁹					
Q.9	Write the total number of binary operation on a set consisting of n element. ANS n^{n^2}					
Q.10	If the points (1, 1, p) and (-3, 0, 1) be equidistant from the plane					
	$\vec{r} \cdot (3\hat{i} + 4\hat{j} - 12\hat{k}) + 13 = 0$, then find the value of p. Ans $p = 1, \frac{7}{3}$					
	PART – B					
Q.11	Show that the curve $y^2 = 8x \& 2x^2 + y^2 = 10$ intersect					
	orthogonally at the point $(1, 2\sqrt{2})$. Ans $m_1 \times m_2 = -1$					
Q.12	If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of the vertices A, B, C of a $\triangle ABC$ respectively. Find an expression for the area of $\triangle ABC$ and hence deduce the condition for the points A, B, C to be collinear. $areaof \triangle ABC = \frac{1}{2} \vec{AB} \times \vec{BC} \Rightarrow A(\triangle ABC) = 0 \therefore \vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{a} \times \vec{b} = 0$					
Q.13	Evaluate: $\int e^x \sin^2 4x dx$ Ans $\frac{e^x}{2} - \frac{e^x \cos 8x}{130} - \frac{4e^x \sin 8x}{65}$ OR					
		┝				

Visit us at : http://www.agyatgupta.com; Email:agyat99@gmail.com Evaluate : $\int e^{x} \left(\frac{x^{2} + 1}{(x+1)^{2}} \right) dx$. Ans $e^{x} - \frac{2e^{x}}{x+1}$ Q.14 Find all point of discontinuity of f, where f is defined as following : $f(x) = \begin{cases} |x| + 3 & ifx \le -3 \\ -2x & -3 < x < 3 \\ 6x + 2 & ifx \ge 3 \end{cases}$ Ans $f(x) = \begin{cases} -x + 3 & x \le -3 \\ -2x & -3 < x < 3 \\ 6x + 2 & x \ge 3 \end{cases}$ **f(x) is** continous at x = - 3 Whe; RHL=LHL = FUNCTIONAL VALUE = 6 & f(x) is not continous at x = 3; RHL = 20 & LHL = -6 Q.15 Show that the following differential equation is homogeneous, and then solve it: $ydx + x \log\left(\frac{y}{x}\right) dy - 2xdy = 0$. Ans $\frac{\left(\log\frac{y}{x} - 1\right)}{\left(y\log\frac{y}{x} - \frac{y}{y}\right)} = xc$ Q.16 The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds. Ans $r = (63t + 27)^{\frac{1}{3}}$ OR Find the particular solution of the differential equation $\frac{dy}{dx} + y \cot x = 2x + x^2 \cot x (x \neq 0) \text{ given that } y = 0 \text{ when } x = \frac{\pi}{2}.$ Ans $y \sin x = x^2 \sin x - \frac{\pi}{4}$ 0.17 Prove the following : $\cos[\tan^{-1}{\sin(\cot^{-1} x)}] = \sqrt{\frac{1+x^2}{2}}$

Target Mathematics by- **AGYAT GUPTA**; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601</u>; 9425110860;9425772164(P)

 Target Mathematics by- AGYAT GUPTA ;
 Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

Visit	us at : http://www. agyatgupta.com; Email:agyat99@gmail.com	Visi	it us at : http://www. agyatgupta.com; Email:agyat99@gmail.com
Q.18	Prove that: $\begin{vmatrix} (y+z)^2 & xy & zx \\ xy & (x+z)^2 & yz \\ xz & yz & (x+y)^2 \end{vmatrix} = 2xyz(x+y+z)^3.$	Q.21	If $y = \frac{x \sin^{-1} x}{\sqrt{(1-x^2)}} + \log \sqrt{1-x^2}$. Prove that $\frac{dy}{dx} = \frac{\sin^{-1} x}{(1-x^2)^{3/2}}$. OR
Q.19	Suppose 15% of men and 36% of women have grey hair. The probability of dying hair by men is 21% and by women is 63%. A dyed hair person is selected at random, what is the probability that this person is a women? Excessive use of dyes to colour the hair can prove harmful. Elaborate. Ans: dyes may contain harmful inorganic compounds which can degrade the quality of hair and although they provide style but might result ³ hair problems like hair fall. Split end etc. OR A survey revealed that 70% men and 30% women eat pan-masala. 10% of	Q.22	Prove that the derivative of $\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ with respect to $\tan^{-1}\left(\frac{2x\sqrt{1-x^2}}{1-2x^2}\right)$ at $x = 0$, is $\frac{1}{4}$. Vectors $\vec{AB} = 3\hat{i} - \hat{j} + \hat{k}$ and $\vec{CD} = -3\hat{i} + 2\hat{j} + 4\hat{k}$ are non – coplanar. The position vectors of the points A and C are $6\hat{i} + 7\hat{j} + 4\hat{k}$ and $-9\hat{j} + 2\hat{k}$
	these men and 20% of these women eat brand X pan-masala. What is the probability that a person seen eating brand X will be a man? Why would you discourage intake of pan-masala? Ans : $P(M E) = \frac{P(M)P(E M)}{P(M)P(E M) + P(W)P(E W)},$ where E: event of taking brand X.		respectively. Find the position vectors of a point P on the line AB and a point Q on the line CD such that \overrightarrow{PQ} is perpendicular to both \overrightarrow{AB} and \overrightarrow{CD} . ANS. $P = 3\hat{i} + 8\hat{j} + 3\hat{k}$ and $Q = -3\hat{i} - 7\hat{j} + 6\hat{k}$.
	$\Rightarrow = \frac{(70/100).(10/100)}{(70/100).(10/100) + (30/100).(20/100)}$ Reason: Intake of pan-masala could be highly injurious to health. It causes cancer. So we would discourage its intake.	Q.23	If $A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$, find $(AB)^{-1}$ Ans
Q.20	Discuss the relation R in the set of real number, defined as $R = \{(a,b): a \le b^3\}$ is Reflexive, Symmetric & Transitive. Ans; Not reflexive $\frac{1}{2} > \frac{1}{8} \Rightarrow \frac{1}{2}, \frac{1}{8} \in R \therefore (\frac{1}{2}, \frac{1}{2}) \notin R$; symmetric $(1,3) \in R \Rightarrow (1,3) \notin R$ & not		$ (AB)^{-1} = \begin{bmatrix} 9 & -3 & 5 \\ -2 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}, B^{-1} = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix} $
	transitive $(100,5) \in R \& (5,2) \in R \Longrightarrow (100,2) \notin R$	Q.24	A toy manufacturers produce two types of dolls ; a basic version doll A and deluxe version doll B. Each doll of type B takes twice as long to produce as one doll of type A . The company have time to make a maximum of 2000 , dolls of type A per day , the supply of plastic is

 Target Mathematics by- AGYAT GUPTA ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

 Target Mathematics by- AGYAT GUPTA ;
 Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

Visit us at : http://www.agyatgupta.com; Email:agyat99@gmail.com

Solution The sample space has 216 outcomes.

	Now	$\mathbf{A} = \begin{cases} (\\ (\\ (\\ (\\ (\\ (\\ (\\ (\\ (\\ ($	1,1,4) (3,1,4) (3 5,1,4) (5	$(1,2,4) \dots (3,2,4) \dots (3,2,4) \dots (3,2,4) \dots (3,2,4) \dots (3,2,4)$	(1,6,4) $(2,7)(3,6,4)$ $(4,7)(5,6,4)$ $(6,7)$	1,4) (2,2,4 1,4) (4,2,4 ,1,4) (6,2,4	4) (2,0 4)(4,6 4)(6,6	5,4) 5,4)
	and	$B = \{(e \in A \cap B) \in A \cap B = \{(e \in A \cap B) \in A \cap B = \{(e \in A \cap B) \in A \cap B \in A \cap B \in A \cap B \}$	5,5,1), (6, 5,5,4)}.	5,2), (6,5,3	8), (6,5,4),	(6,5,5), (6,	5,6)}	
	Now	$P(B) = \frac{6}{21}$	$\frac{5}{16}$ and H	$P(A \cap B)$	$=\frac{1}{216}$			
	Then	$P(A B) = \frac{P(A B)}{2}$	$\frac{(A \cap B)}{P(B)}$	$=\frac{\frac{1}{216}}{\frac{6}{216}}=\frac{1}{6}$				
	In an exa tosses a f falls head	amination, 10 fair coin and ds, he answe	0 questi determ ers true	OR ons of tru ine his and and if it	ue- false nswer to falls tail	type are each que s, he ans	asked. estion. I wers fa	A student If the coin Ise. Show
	that the probability that he answers at most 7 questions correctly is $\frac{121}{128}$.							
	ANS : P	= 1 / 2 ; q =	1/2.8	k n = 10	.require	d probat	oility =	<mark>at most 7</mark>
	$p(x \le 7)$	$=1-p(x \ge 8)$	=1-[p]	p(=8) + p((x=9)+	p(x=10)	1	=
	$1 - \left[10c_8\right]$	$\left(\frac{1}{2}\right)^{10} + 10c_9 \left($	$\left(\frac{1}{2}\right)^{10} + 10$	$0c_{10}\left(\frac{1}{2}\right)^{10}$	$\left] = \frac{121}{128} \right]$			
Q.28	State wh	en the line	$\overrightarrow{r} = \overrightarrow{a} + \overrightarrow{a}$	$\lambda \stackrel{\rightarrow}{b}$ is a	parallel	to the	plane	$\overrightarrow{r.n} = d$.
	Show that	at the line r	$=(\hat{i}+\hat{j})$	\dot{j}) + $\lambda(2\dot{i}$	$\hat{j}+\hat{j}+4\hat{k}$	x) is par	allel to	the plane

Target Mathematics by- AGYAT GUPTA ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

 Target Mathematics by- AGYAT GUPTA ;
 Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : 9425109601; 9425110860;9425772164(P)

